

Varicella-zoster (chickenpox) vaccines for Australian children

This fact sheet provides information on varicella-zoster (chickenpox) and the available vaccines to assist immunisation providers in the delivery of varicella-zoster vaccinations to children.

Disease and epidemiology

- Varicella (also known as chickenpox) is a viral illness caused by primary infection with the varicella-zoster virus (VZV). It is characterised by vesicular skin lesions and fever.
- Complications of chickenpox occur in about 1% of cases. Prior to universal immunisation, there were about 1,500 hospitalisations per year in Australia, most of which were in otherwise healthy young children.

Who should be vaccinated

- In Australia, a single dose of varicella vaccine is available on the National Immunisation Program (NIP) at 18 months of age using the four-in-one combination vaccine, which protects against measles, mumps, rubella and varicella.
- A single 'catch-up' dose of monovalent varicella vaccine, delivered in the school-based program, is available on the NIP for adolescents with no history of chickenpox or previous vaccination.
- People ≥14 years of age who are not immune to chickenpox require 2 doses of varicella vaccine at least 1 month apart.
- Varicella vaccination is recommended for all adults who have not previously had chickenpox or received the vaccine, especially healthcare workers, childcare workers and household contacts of people who are immunocompromised.

Vaccines

- One dose of varicella vaccine (in children up to 13 years of age) will prevent severe varicella in approximately 65–82% of cases. A second dose greatly increases vaccine effectiveness.
- Disease in vaccinated children ('breakthrough varicella') is often mild with <50 lesions in about 70% of cases.
- Common side effects from varicella vaccination include fever and injection site reactions. Rashes can occur following vaccination, either at the injection site (in 1–3% of vaccine recipients) or generalised (in 3–5%).

The disease

The varicella-zoster virus (VZV) is one of eight herpes viruses that cause infections in humans. It is a double-stranded DNA virus and is most closely related to herpes simplex virus types 1 and 2. These viruses rapidly proliferate, invade and destroy infected cells. Like other herpes viruses, VZV has the unusual ability to establish a latent infection in nerve ganglions and later reactivate.

Primary infection with VZV causes varicella or 'chickenpox', whereas reactivation of latent VZV causes herpes zoster (HZ) also known as zoster or 'shingles'. (Refer to NCIRS fact sheet <u>Zoster</u> <u>vaccine for Australian adults.</u>)

Chickenpox is usually a self-limiting disease most commonly resulting in a general malaise, fever and vesicular rash. Complications of chickenpox infection occur in approximately 1% of cases, with the most common being secondary bacterial infection of the skin lesions. Other complications include pneumonia, encephalitis and cerebellar ataxia, thrombocytopenia and hepatitis. Infection in adolescents and adults is usually more severe than infection in children. The average number of skin vesicles is usually 250–500 but more than 500 lesions may occur in severe cases.

VZV is transmitted via the respiratory route (with viral particles present in respiratory droplets from 24–48 hours before the appearance of the rash) and in the fluid of the skin lesions of an infected person.¹ The secondary attack rate from a person with primary varicella to susceptible children has been estimated to be between 61% and 100%, whereas secondary attack rates following contact with shingles are lower at about 15%.^{2,3}

Epidemiology

In unvaccinated populations, varicella is primarily a childhood illness. In temperate countries, more than 90% of the population develop clinical or serological infection by early adulthood, with the highest attack rates in children aged 5–9 years.^{4,5} Before the use of varicella vaccine, 83% of children were infected by 10–14 years of age,⁶ with about 240,000 cases, 1,500 hospitalisations and approximately 7 deaths each year from varicella in Australia.⁷⁻¹⁰

A single dose of varicella vaccine has been recommended in Australia since 2003 and funded under the National Immunisation Program (NIP) since late 2005. Significant declines in hospitalisation rates have been observed in all age groups under 40 years of age.¹⁹ The greatest declines (84%) have been in children 18–59 months of age, the group targeted by the funded immunisation program.²⁰ Herd protection in younger children not eligible for vaccination has also been observed, with a 67% reduction in varicella hospitalisation rates seen in children aged <18 months.¹⁹

Who should be vaccinated

National Immunisation Program

A single dose of varicella vaccine is funded on the NIP at 18 months of age. This is given in conjunction with the second recommended dose of measles-mumps-rubella, using the four-in-one combination vaccine (measles-mumps-rubella-varicella; MMRV).

Although not funded under the NIP, a second dose of varicella vaccine can be considered in children <14 years of age to provide enhanced protection.

Further detailed information on the national varicella vaccination program in Australia for both immunisation providers and the general public is available under the <u>Immunisation section</u> of the Australian Government Department of Health and Aged Care website. State or territory health authorities can be consulted for specific information on their individual school-based vaccine programs.

Others recommended for vaccination

Two doses of varicella vaccine, given at least 1 month apart, are recommended for all nonimmune adolescents (≥14 years) and adults, although not funded on the NIP. Vaccination against varicella is particularly recommended for non-immune persons at high risk of exposure to, or complications from, varicella, such as healthcare workers, childcare workers, non-immune women before pregnancy and parents. Vaccination of non-immune household contacts of people who are immunocompromised is also important to minimise opportunities for transmission of varicella to the immunocompromised person. Refer to the Australian Immunisation Handbook for more details on vaccine recommendations.²¹

Vaccines

Two monovalent varicella vaccines (Varilrix, Varivax Refrigerated) and two four-in-one MMRV combination vaccines (Priorix-tetra and ProQuad) are registered for use in Australia. They all contain live attenuated (weakened) varicella-zoster virus derived from the Oka varicella-zoster virus strain.

Administration

The dose of monovalent varicella (VV) and MMRV vaccines is 0.5 mL, administered by subcutaneous or intramuscular injection. MMRV vaccines are not recommended for use in people ≥14 years of age because of a lack of data on their safety and efficacy in this age group.

Vaccine efficacy/effectiveness

In clinical trials of the varicella vaccine in children, undertaken before vaccine licensure, the efficacy after 1 dose was reported to be approximately 96%.²²⁻²⁴ However, many post-licensure studies have determined that the vaccine effectiveness of 1 dose given early in childhood is less than this original estimate. Studies from the US estimate vaccine effective is about 80–85% for the prevention of any disease, with 95–98% effectiveness in preventing severe varicella.^{2,25-28} Australian studies suggest that effectiveness of a single dose may be slightly lower, with effectiveness against varicella hospitalisations between 64%²⁹ and 82%.³⁰ Similar to the monovalent vaccines, the effectiveness of 1 dose of MMRV (Priorix-Tetra) against any disease is lower for a single dose (65%) than for 2 doses (95%).³¹ A second dose of varicella-containing vaccine in children is optimal to provide an immune response more like natural infection, reducing the risk of vaccine failure and increasing population immunity.¹²

The response to a single dose of varicella vaccine decreases as age increases; hence, healthy adolescents (\geq 14 years) and adults require 2 doses, 1–2 months apart.³²

Breakthrough disease (natural varicella infection in vaccinated individuals)

Vaccine failure is known as 'breakthrough varicella' and is defined as a case of wild-type varicella infection occurring more than 42 days after vaccination. The majority of cases of breakthrough varicella are mild and result in fewer skin lesions (usually <50), although up to 28% of breakthrough varicella cases may be severe (>500 lesions).² In mild breakthrough cases, the skin lesions may not be vesicular and systemic symptoms, such as fever, occur less frequently.² Because of this, breakthrough disease may not be recognised, or may be misdiagnosed. However, breakthrough varicella can still be contagious and exclusion from child care or school is recommended. A study of household secondary attack rates found that contagiousness is related to the number of lesions. Vaccinated cases with more than 50 lesions were as contagious as unvaccinated cases, but when vaccinated cases presented with fewer than 50 lesions, they were only one-third as contagious.²

Recent studies have suggested higher rates of breakthrough varicella in recipients of 1 dose than in recipients of 2 doses, in single dose vaccine recipients more than 5 years after vaccination, and in settings of close contact such as households.^{33,34} Long-term follow-up of 7,500 children aged 12–23 months found no difference in rates of breakthrough varicella between those vaccinated at 12–14 months of age and those vaccinated at 15–23 months of age.³⁵

Vaccine safety

Vaccine reactions following monovalent varicella vaccination are generally mild and include fever (in 15% of vaccine recipients) and injection site reactions (in about 7–30% of vaccine recipients).^{36,37}

A varicella-like rash may develop following vaccination, occurring at the injection site (in 1–3% of vaccine recipients) or generalised (in an additional 3–5%), and typically consists of 2–5 lesions.³⁸ Rashes occurring within 14 days of vaccination (median 8 days) may be due to coincident wild VZV infection, while rashes due to the vaccine strain VZV occur a median 21 days (range 5–42 days) after vaccination.^{39,40} Vaccine virus transmission is extremely rare and most rashes after varicella vaccination are due to other causes, especially in children. However, vaccine recipients who develop a rash should avoid contact with people who are immunocompromised.

More serious adverse events occurring soon after vaccination have been reported at a rate of 2.9 per 100,000 doses by passive surveillance.^{40,41} A temporal but not necessarily causal relationship to the vaccine has been established. However, causality is plausible for some reactions such as anaphylaxis following vaccination, thrombocytopenia, ataxia and encephalitis. These latter three are rare complications of natural varicella infection.⁴¹ Adverse events occurring after vaccination should be reported to the Therapeutic Goods Administration (TGA) via specific state and territory reporting mechanisms.⁴²

Three post-marketing studies in the USA identified an approximately 2-fold increased risk of fever and febrile convulsions in first-dose recipients of MMRV vaccine aged 12–23 months in the period 7–10 days⁴³ (or 5–12 days⁴⁴) after vaccination, compared with recipients of MMR and VV given separately. Vaccination with MMRV vaccine resulted in 1 additional febrile seizure for every 2,300 doses compared to vaccination with MMR and varicella vaccines separately.⁴⁵ However, in an Australian study, the risk of febrile seizures was not increased after receipt of MMRV vaccine (relative incidence: 1.08 [95%CI: 0.55–2.13]).⁴⁷ It is recommended that parents/carers/vaccine recipients are advised about possible symptoms in the period 5–12 days after vaccination and given advice on their management, including the use of paracetamol for fever.

Reactivation of the varicella vaccine strain to cause shingles in vaccine recipients is extremely rare. Cases of shingles in vaccine recipients have been reported but are usually due to wild-type virus.

Concomitant administration

Monovalent varicella vaccines are safe to administer at the same time as all other recommended vaccines on the NIP schedule (given subcutaneously at a separate site). As MMR vaccine is a live attenuated vaccine, it should either be administered at the same visit (as MMR and varicella vaccines if not given as MMRV vaccine) or at least 4 weeks apart from the monovalent varicella vaccine. This is because there is evidence of higher vaccine failure rates if MMR vaccine is given within 4 weeks of the varicella vaccine (unless given on the same day).⁴²

Contraindications/precautions

- Varicella vaccines are live attenuated viral vaccines and are contraindicated in pregnancy, and pregnancy should be avoided for 1 month following vaccination. However, in women inadvertently vaccinated during pregnancy, including those known to be seronegative prior to vaccination, no adverse effects attributable to vaccination have been reported.⁴⁸
- Varicella vaccination is contraindicated for people who are immunocompromised, but their household contacts should be vaccinated, if non-immune, to protect the immunocompromised person against infection.
- Some patients with HIV may be able to receive varicella vaccination. Refer to the Australian Immunisation Handbook for more details.⁴²

- Varicella-containing vaccines are contraindicated in persons who have had anaphylaxis following a previous dose of any varicella-containing vaccine or anaphylaxis following any vaccine component.
- Receipt of immunoglobulin-containing products 3–11 months before or within 3 weeks after vaccination, long-term use of salicylate (aspirin) therapy, high-dose systemic corticosteroid use and having IFNAR1 deficiency are precautions for VV or MMRV vaccine. Refer to the Australian Immunisation Handbook for more details.⁴²

Other considerations

Serologic testing

In children <14 years of age, serological testing prior to vaccination is not necessary as a reliable history of varicella infection in this age group correlates well with immunity. If the history of past varicella infection is uncertain (or absent), the individual should be considered susceptible and should be immunised. Children can safely receive either VV or MMRV vaccine even if prior infection with VZV has occurred. Serological testing is more likely to be useful for those over the age of 14 years as many without a history of varicella infection will actually be seropositive. Serological testing after vaccination is not required or recommended. Refer to the Australian Immunisation Handbook for more details.⁴²

Herpes zoster (shingles)

Previous mathematical modelling has suggested that rates of shingles in adults may temporarily increase over time following the introduction of universal varicella vaccination because of a reduced exposure to the virus in the community. However, studies from the USA have found an increased incidence of age-specific shingles prior to the varicella vaccine program and use of the vaccine has not affected this increase.⁴⁹ Similar findings have been demonstrated in Australia.⁵⁰ Preliminary data from the USA reports lower rates of shingles in varicella vaccinated immunocompromised children^{51,52} and healthy adults,⁵³ suggesting the incidence of shingles is likely to be lower over time in varicella vaccine recipients.

A vaccine to prevent shingles in older adults is recommended in Australia. For further information, see the NCIRS fact sheet <u>Zoster vaccine for Australian adults</u>.

Additional resources for primary medical care/vaccination providers

- The Australian Immunisation Handbook
- Immunisation Australian Government Department of Health and Aged Care
- <u>National Immunisation Program schedule</u>

References

- 1. Arvin AM. Varicella-zoster virus. Clinical Microbiology Reviews 1996;9:361-81.
- 2. Seward JF, Zhang JX, Maupin TJ, Mascola L, Jumaan AO. Contagiousness of varicella in vaccinated cases: a household contact study. JAMA 2004;292:704-8.
- Harpaz R, Ortega-Sanchez IR, Seward JF. Prevention of herpes zoster: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. Recommendations and Reports 2008;57(RR-5):1-30.
- 4. Gershon AA, Breuer J, Cohen JI, et al. Varicella zoster virus infection. Nature Reviews. Disease Primers 2015;1:15016.

- 5. Gershon AA, Marin M, Seward JF. Varicella vaccines. In: Plotkin SA, Orenstein WA, Offit PA, Edwards KM, eds. Plotkin's vaccines. 7th ed. Philadelphia, PA: Elsevier; 2018.
- 6. Gidding HF, MacIntyre CR, Burgess MA, Gilbert GL. The seroepidemiology and transmission dynamics of varicella in Australia. Epidemiology and Infection 2003;131:1085-9.
- 7. MacIntyre CR, Chu CP, Burgess MA. Use of hospitalization and pharmaceutical prescribing data to compare the prevaccination burden of varicella and herpes zoster in Australia. Epidemiology and Infection 2003;131:675-82.
- Brotherton J, Wang H, Schaffer A, et al. Vaccine preventable diseases and vaccination coverage in Australia, 2003 to 2005. Communicable Diseases Intelligence 2007;31 Suppl:viii-S152.
- Chant KG, Sullivan EA, Burgess MA, et al. Varicella-zoster virus infection in Australia. [erratum appears in Aust N Z J Public Health 1998 Aug;22(5):630.]. Australian and New Zealand Journal of Public Health 1998;22:413-8.
- Brotherton J, McIntyre P, Puech M, et al. Vaccine preventable diseases and vaccination coverage in Australia, 2001 to 2002. Communicable Diseases Intelligence 2004;28 Suppl 2:S1-S116.
- 11. Carapetis JR, Russell DM, Curtis N. The burden and cost of hospitalised varicella and zoster in Australian children. Vaccine 2004;23:755-61.
- Centers for Disease Control and Prevention (CDC), Marin M, Guris D, et al. Prevention of varicella: recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR. Recommendations and Reports 2007;56(RR-4):1-40.
- 13. Davis MM, Patel MS, Gebremariam A. Decline in varicella-related hospitalizations and expenditures for children and adults after introduction of varicella vaccine in the United States. Pediatrics 2004;114:786-92.
- 14. Seward JF, Watson BM, Peterson CL, et al. Varicella disease after introduction of varicella vaccine in the United States, 1995–2000. JAMA 2002;287:606-11.
- 15. Zhou F, Harpaz R, Jumaan AO, Winston CA, Shefer A. Impact of varicella vaccination on health care utilization. JAMA 2005;294:797-802.
- 16. Marin M, Watson TL, Chaves SS, et al. Varicella among adults: data from an active surveillance project, 1995–2005. Journal of Infectious Diseases 2008;197 Suppl 2:S94-S100.
- 17. Marin M, Zhang JX, Seward JF. Near elimination of varicella deaths in the US after implementation of the vaccination program. Pediatrics 2011;128:214-20.
- 18. Bialek SR, Perella D, Zhang J, et al. Impact of a routine two-dose varicella vaccination program on varicella epidemiology. Pediatrics 2013;132:e1134-40.
- Sheel M, Quinn H, Beard F, et al. Australian vaccine preventable disease epidemiological review series: varicella-zoster virus infections, 1998–2015. Communicable Diseases Intelligence 2018: In press.
- 20. Heywood AE, Wang H, Macartney KK, McIntyre P. Varicella and herpes zoster hospitalizations before and after implementation of one-dose varicella vaccination in Australia: an ecological study. Bulletin of the World Health Organization 2014;92:593-604.
- 21. Australian Technical Advisory Group on Immunisation (ATAGI). The Australian Immunisation Handbook 10th ed. Canberra: The Australian Government Department of Health and Ageing; 2018.

- 22. Kuter BJ, Weibel RE, Guess HA, et al. Oka/Merck varicella vaccine in healthy children: final report of a 2-year efficacy study and 7-year follow-up studies. Vaccine 1991;9:643-7.
- 23. Varis T, Vesikari T. Efficacy of high-titer live attenuated varicella vaccine in healthy young children. Journal of Infectious Diseases 1996;174 Suppl 3:S330-S4.
- 24. Weibel RE, Neff BJ, Kuter BJ, et al. Live attenuated varicella virus vaccine: efficacy trial in healthy children. New England Journal of Medicine 1984;310:1409-15.
- 25. Centers for Disease Control and Prevention (CDC). Outbreak of varicella among vaccinated children Michigan, 2003. MMWR. Morbidity and Mortality Weekly Report 2004;53:389-92.
- 26. Dworkin MS, Jennings CE, Roth-Thomas J, et al. An outbreak of varicella among children attending preschool and elementary school in Illinois. Clinical Infectious Diseases 2002;35:102-4.
- 27. Galil K, Lee B, Strine T, et al. Outbreak of varicella at a day-care center despite vaccination. New England Journal of Medicine 2002;347:1909-15.
- 28. Vázquez M, LaRussa PS, Gershon AA, et al. Effectiveness over time of varicella vaccine. JAMA 2004;291:851-5.
- 29. Quinn HE, Gidding HF, Marshall HS, et al. Varicella vaccine effectiveness over 10 years in Australia; moderate protection from 1-dose program. Journal of Infection 2019;78:220-5.
- 30. Sheridan SL, Quinn HE, Hull BP, et al. Impact and effectiveness of childhood varicella vaccine program in Queensland, Australia. Vaccine 2017;35:3490-7.
- Prymula R, Bergsaker MR, Esposito S, et al. Protection against varicella with two doses of combined measles-mumps-rubella-varicella vaccine versus one dose of monovalent varicella vaccine: a multicentre, observer-blind, randomised, controlled trial. The Lancet 2014;383:1313-24.
- 32. Kuter BJ, Ngai A, Patterson CM, et al. Safety, tolerability, and immunogenicity of two regimens of Oka/Merck varicella vaccine (Varivax®) in healthy adolescents and adults. Vaccine 1995;13:967-72.
- 33. Kuter B, Matthews H, Shinefield H, et al. Ten year follow-up of healthy children who received one or two injections of varicella vaccine. Pediatric Infectious Disease Journal 2004;23:132-7.
- 34. Chaves SS, Gargiullo P, Zhang JX, et al. Loss of vaccine-induced immunity to varicella over time. New England Journal of Medicine 2007;356:1121-9.
- 35. Black S, Ray P, Shinefield H, Saddier P, Nikas A. Lack of association between age at varicella vaccination and risk of breakthrough varicella, within the Northern California Kaiser Permanente Medical Care Program. Journal of Infectious Diseases 2006;197 Suppl 2:S139-S42.
- 36. Skull SA, Wang EE. Varicella vaccination a critical review of the evidence. Archives of Disease in Childhood 2001;85:83-90.
- 37. Centers for Disease Control and Prevention (CDC). Varicella. In: Hamborsky J, Kroger A, Wolfe C, eds. Epidemiology and prevention of vaccine-preventable diseases. 13th ed. Washington, DC: Public Health Foundation; 2015. <u>https://www.cdc.gov/vaccines/pubs/pinkbook/index.html</u>
- American Academy of Pediatrics. Varicella-zoster infections. In: Kimberlin DW, Brady MT, Jackson MA, Long SS, eds. Red book: 2015 report of the Committee on Infectious Diseases.
 30th ed. Elk Grove Village, IL: American Academy of Pediatrics; 2015.

- 39. Sharrar RG, LaRussa P, Galea SA, et al. The postmarketing safety profile of varicella vaccine. Vaccine 2000;19:916-23.
- 40. Galea SA, Sweet A, Beninger P, et al. The safety profile of varicella vaccine: a 10-year review. Journal of Infectious Diseases 2008;197 Suppl 2:S165-9.
- 41. Wise RP, Salive ME, Braun MM, et al. Postlicensure safety surveillance for varicella vaccine. [erratum appears in JAMA 2000 Dec 27;284(24):3129]. JAMA 2000;284:1271-9.
- 42. Australian Technical Advisory Group on Immunisation (ATAGI). The Australian immunisation handbook. 10th ed (2015 update) ed. Canberra: Australian Government Department of Health; 2015.
- 43. Klein NP, Fireman B, Yih WK, et al. Measles-mumps-rubella-varicella combination vaccine and the risk of febrile seizures. Pediatrics 2010;126:e1-8.
- 44. Jacobsen SJ, Ackerson BK, Sy LS, et al. Observational safety study of febrile convulsion following first dose MMRV vaccination in a managed care setting. Vaccine 2009;27:4656-61.
- 45. Rowhani-Rahbar A, Fireman B, Lewis E, et al. Effect of age on the risk of fever and seizures following immunization with measles-containing vaccines in children. JAMA Pediatrics 2013;167:1111-7.
- 46. Klein NP, Lewis E, Baxter R, et al. Measles-containing vaccines and febrile seizures in children age 4 to 6 years. Pediatrics 2012;129:809-14.
- 47. Macartney K, Gidding HF, Trinh L, et al. Evaluation of combination measles-mumps-rubellavaricella vaccine introduction in Australia. JAMA Pediatrics 2017;171:992-8.
- Marin M, Willis ED, Marko A, et al. Closure of varicella-zoster virus-containing vaccines pregnancy registry – United States, 2013. MMWR. Morbidity and Mortality Weekly Report 2014;63:732-3.
- 49. Hales CM, Harpaz R, Joesoef MR, Bialek SR. Examination of links between herpes zoster incidence and childhood varicella vaccination. Annals of Internal Medicine 2013;159:739-45.
- 50. Jardine A, Conaty SJ, Vally H. Herpes zoster in Australia: evidence of increase in incidence in adults attributable to varicella immunization? Epidemiology and Infection 2011;139:658-65.
- 51. Broyer M, Tete MJ, Guest G, Gagnadoux MF, Rouzioux C. Varicella and zoster in children after kidney transplantation: long-term results of vaccination. Pediatrics 1997;99:35-9.
- 52. Hardy I, Gershon AA, Steinberg SP, LaRussa P, Varicella Vaccine Collaborative Study Group. The incidence of zoster after immunization with live attenuated varicella vaccine: a study in children with leukemia. New England Journal of Medicine 1991;325:1545-50.
- 53. Hambleton S, Steinberg SP, LaRussa P, Shapiro ED, Gershon AA. Risk of herpes zoster in adults immunized with varicella vaccine. Journal of Infectious Diseases 2008;197 Suppl 2:S196-S9.